OAEP 3-Round A Generic and Secure Asymmetric Encryption Padding

Duong Hieu Phan ENS – France **David Pointcheval** *CNRS-ENS – France*

Asiacrypt '04 Jeju Island - Korea December 6th 2004

Summary

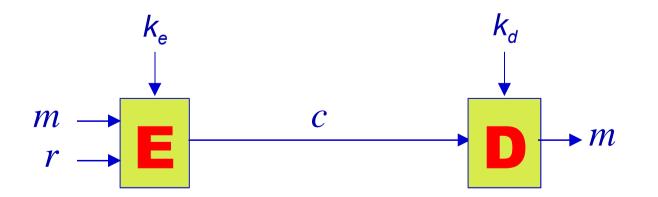
- Asymmetric Encryption
- OAEP 3-Round
 - Review
 - Limitations
- New Results
- Conclusion

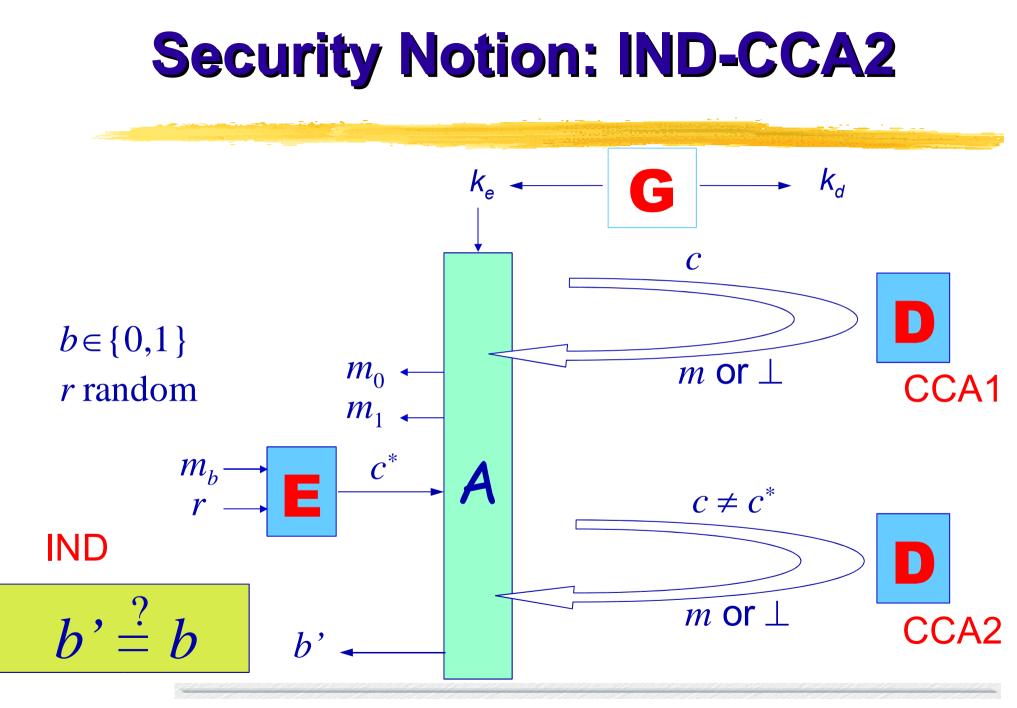
Asymmetric Encryption

An asymmetric encryption scheme $\pi = (G, E, D)$ is defined by 3 algorithms:

$$\omega \longrightarrow \mathbf{G} \longrightarrow (k_e, k_d)$$

E – encryption
D – decryption





David Pointcheval – CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 4

IND: Probabilistic

To achieve indistinguishability, a public-key encryption scheme must be probabilistic otherwise, with the challenge $c = \mathbf{E}(m_b)$ one computes $c_0 = \mathbf{E}(m_0)$ and checks whether $c_0 = c$ For any plaintext, the number of possible ciphertexts must be lower-bounded by 2^k , for a security level in 2^k :

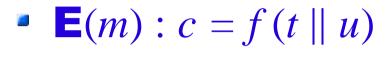
at least length(c) \geq length(m) + k

CCA: Redundancy?

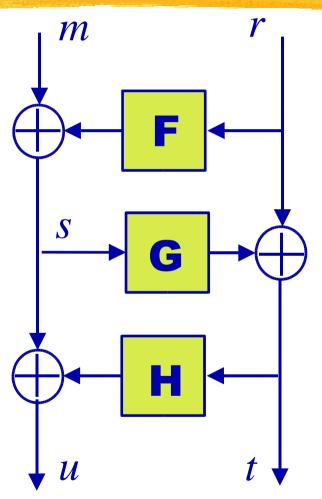
- For IND-CCA2: redundancy Plaintext-awareness = invalid ciphertexts
- Last year, we proposed:
 - Full-Domain Permutation
 - > OAEP 3-Round

IND-CCA2 without redundancy

OAEP 3-Round



• $\mathbf{D}(c) : t \parallel u = f^{-1}(c)$ then invert OAEP, and return *m*



F, G and H: random functions

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 7

Security Result: Asiacrypt '03

- With a random of size $k_0^{}$, but no redundancy In the ROM, a (t,ε) -IND-CCA2 adversary helps to **partially invert** f within time $t' \approx t + q_{\mathbf{g}}q_{\mathbf{H}}T_{f}^{}$, with success probability $\geq \varepsilon - q_{\mathbf{p}}Q/2^{k_0}$
- Limitations:
- Requires a trapdoor OW permutation
- Reduction to the partial-domain one-wayness

Intuition

From the view of the challenge c^{*}

- > OAEP (with redundancy): [Sh01] showed that an adversary could produce a ciphertext c, with $r=r^*$
- > [FOPS01] ... but needs to query $H(s^*)$
- > OAEP 2-round (w/t redundancy): we thought that no easy proof could lead to $H(s^*)$ but...
- > OAEP 3-round (w/t redundancy): could prove the requirement of the query $\mathbf{H}(t^*)$ \Rightarrow Partial-Domain OW
- This paper: requirement of **both G**(s^*) and **H**(t^*) \Rightarrow **Full-Domain OW**

m

New Security Result

With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-CCA2 adversary helps to **invert** f within time $t' \approx t + q_{\mathbf{G}}q_{\mathbf{H}}T_{f'}$ with success probability $\geq \varepsilon/2 - 5q_{\mathbf{D}}Q/2^{k_0}$

where Q is the global number of queries Simulation of the decryption oracle on c:

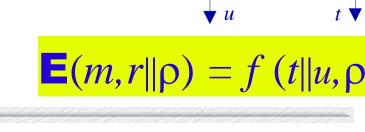
- ▶ look for all the tuples (s, G(s), t, H(t))
- check whether $f(t \parallel \mathbf{H}(t) \oplus s) = c$
- compute $m = s \oplus \mathbf{F}(t \oplus \mathbf{G}(s))$ or random

Permutation Requirement

- The permutation requirement rules out many candidates: ElGamal, Paillier, Rabin, NTRU, ...
- Could we apply it to trapdoor one-way probabilistic injections?

•
$$f:(x,\rho) \rightarrow y = f(x,\rho)$$

- injection in x: at most one x for each y
 (but possibly many ρ)
- hard to invert
- a trapdoor helps to recover x



Problems for the Simulation

- Simulation of the decryption oracle on c:
 - > look for all the tuples $(s, \mathbf{G}(s), t, \mathbf{H}(t))$
 - check whether $f(t \parallel \mathbf{H}(t) \oplus s, \rho) = c$ (existence of ρ)
 - compute $m = s \oplus \mathbf{F}(t \oplus \mathbf{G}(s))$ or random
- Need of a decisional oracle: Same(c, c')
 - Do c and c' encrypt the same element?
 - Computational problem given access to a decisional oracle → Gap Problem
- And what about $c = f(t^* || \mathbf{H}(t^*) \oplus s^*, \rho)$?
 - Same (c, c^*) is true, but $m = m^*$ is unknown

Relaxed Chosen-Ciphertext Security

• [ADR02] Generalized CCA:

- R is a decryption-respecting relation
 - Intuition: R formalizes a trivial relation between ciphertexts encrypting the same plaintext.
- The adversary is not allowed to ask decryption queries on c in relation with c*
- [CKN03] Replayable CCA:
 - On c which encrypts either m_0 or m_1 : answer = TEST
- Relaxed CCA: $(m,r,\rho) \rightarrow c = \mathbf{E}(m,r||\rho)$

• On $c = \mathbf{E}(m^*, r^* || \rho)$: answer = TEST

Relations

Generalized CCA: is the most natural

- non-significant bits in the ciphertext cannot be used in the attack.
- Replayable CCA: TEST reveals some information
- RCCA security \Rightarrow Replayable CCA
 - a RCCA simulator decrypts more often

• On $c = \mathbf{E}(m^*, r^* \| \rho) \Rightarrow m$ is m_b and thus either m_0 or m_1

- If $|\rho|=0$
 - > TEST on c^* only: **RCCA = CCA**

Same is the equality test: **no** more Gap Problem

 $\mathbf{E}(m, r \| \rho) = f(t \| u, \rho)$

Security Result

- With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-RCCA adversary helps to **invert** f within time $t' \approx t + q_{\mathbf{D}}q_{\mathbf{G}}q_{\mathbf{H}}(T_f + T_{\text{same}})$ with success probability $\geq \varepsilon/2 - 5q_{\mathbf{D}}Q/2^{k_0}$ after less than $q_{\mathbf{D}}q_{\mathbf{G}}q_{\mathbf{H}}$ queries to the Same oracle
- quite loose reduction in general:
 - large security parameters
 - but small overhead: 160 bits of additional randomness

The RSA Case

- The same proof applies to RSA
 - RCCA = CCA
 - Gap-RSA = RSA
 - Proper bookkeeping: better reduction

 $\rightarrow q_{\mathbf{D}} q_{\mathbf{G}} q_{\mathbf{H}} \rightarrow q_{\mathbf{G}} q_{\mathbf{H}}$

⇒ Cost of the reduction similar to OAEP
 but relative to the Full-Domain RSA
 ⇒ The most efficient reduction
 for an RSA-based padding into a Z^{*} element

Conclusion

OAEP 3-Round: the best OAEP-like variant

the tightest reduction in the RSA case

- for any exponent
- relative to the RSA problem
- no redundancy: almost optimal bandwidth
- applicable to most of the asymmetric primitives
 - namely ElGamal, relative to the Gap DH